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Abstract

We calculate the optical diffraction radiation generated by a bunch of high energy par-
ticles as they pass through a round hole within an annular metallic ring. We derive ex-
pressions for the differential angular spectrum in the far-field and the intensities of the
horizontal and vertical polarizations. The sensitivity ofthe spectrum to changes in beam
size and position is shown. The total photon yield from the bunch is calculated and used to
set limits on the detectable wavelengths.
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1 Introduction

The use of optical diffraction radiation (ODR) as a diagnostic tool has increased in recent years.
The potential of this technique has been demonstrated in several experiments at KEK [1], APS
[2], FLASH [3] and possibly other facilities. These experiments were performed in extraction
beam lines of lepton machines. However this technique can also be applied to high energy
hadron beams. In this report we consider the ODR produced by such beams with the target as a
round hole and apply the results to the Tevatron.

This radiation is produced when a beam passes in the vicinityof a conducting target. The
electro-magnetic fields due to the beam induce currents on the target and as the beam propa-
gates, the currents change in time producing radiation bothin the direction of beam propagation
and along the direction of specular reflection from the target. This latter radiation, also termed
backward diffraction radiation (BDR), is more useful for diagnostics since it can be directed
out at the same longitudinal location as the target. This radiation is different from optical tran-
sition radiation (OTR) in which the beam passes through a metal target. Transition radiation
is not suitable for continuous monitoring of a beam in a collider due to the beam energy loss
and emittance growth and the fact that the target may be damaged. However the techniques for
analyzing ODR are similar in many respects to those for OTR.

Measurements of the radiation intensity either in the near field or far-field have been used
to determine beam positions and sizes. For example, the beamsize and beam position of a 1.28
GeV electron beam were measured in an extraction beam line atKEK [1] using the far-field
angular distribution of the radiation. The near-field imagewas used to monitor the relative beam
size of a 7 GeV electron beam in the extraction line at APS [2].In principle, measurements of
the beam divergence are also possible using the interference of ODR between two targets, as
has been done with OTR.

This paper is motivated by the desire to use this technique incolliders, especially for the
LHC and possibly for future colliders envisaged such as the muon collider. A brief report on
these prospects was presented earlier [4]. If the techniqueyields beam measurements with suf-
ficient accuracy and reliability then the non-invasive nature would allow continuous monitoring
during the length of a luminosity run. This would be valuableif the beam can be imaged close
to the interaction points.

Synchrotron radiation is already used as a non-invasive diagnostic tool in the Tevatron and
will also be used in the LHC. The principal advantage of ODR isthat it can be generated in a
straight section and therefore used for imaging in an experimental insertion. The disadvantage
is that the ODR flux is less copious than synchrotron radiation (OSR) and imaging will take
longer than with OSR.

In Section 2 we briefly discuss the parameters of different hadron colliders. In Section 3
we derive the basic results for the angular differential spectrum of ODR from a round hole
due to a bunch. We apply these results in Section 4 to find the sensitivity of the spectrum to
beam size and offset changes. In Section 5, we calculate the expected photon yield from a
bunch per turn as a function of frequency and we use this to findthe frequency range where a
sufficiently strong ODR signal can be obtained. In Section 6 we do a brief comparison of the
ODR spectrum with the OTR spectrum. We briefly list in Section7 the experimental issues
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Tevatron RHIC LHC
Energy [GeV] 980 250 7000

Bunch intensity 2.7×1011 2×1011 1.1×1011

Beam size [µm] 400 1012 807
Beam div/opening angle 2.9×10−3 1.2×10−5 5.7×10−3

Number of bunches 36 55→ 120 2808
Revolution frequency [kHz] 47.6 78.2 11.2

Table 1: Table of parameters for hadron colliders

associated with measuring ODR when two beams are present. Weend with our conclusions in
Section 8. We will use CGS units throughout.

2 Hadron colliders

Optical transition radiation (OTR) has been used in the Tevatron at injection energy to image
the beam [6]. At collision this technique is not feasible both because of the impact on beam
quality via multiple scattering in the target and the damageto the target itself. However ODR
is non-intercepting and has the potential to be a useful diagnostic tool at collision energy. This
technique also has potential in the LHC where we envision that placing ODR targets on both
sides of the interaction point (IP) and before the first interaction region quadrupole would allow
a non-invasive measurement of the beam size at the IP. At RHICthe energy is lower so one
would have to use longer wavelength ODR for a substantial radiation flux.

Table 1 shows some of the key parameters for these hadron colliders. The beam size in
the Tevatron was calculated at C0 while for RHIC and the LHC, locations in front of the first
interaction region quadrupole were chosen. The ratio of thebeam divergence to the opening
angle of the radiation (∼ 1/γ) is very small in all the colliders, hence the distortion of the
spectrum due to the beam divergence should be negligible.

3 ODR from a round hole

The fields induced by a beam as it passes through a hole dependson the beam energy, the beam
size, the beam position relative to the center of the hole andthe shape of the hole. In this paper
we consider a round hole as a target. First we analyse the fields from a single particle and
generalize results obtained many years ago by Ter-Mikaelian [5]. Next we consider the ODR
fields and spectrum generated by a Gaussian bunch of particles.

3.1 Single particle fields

Consider the case where a single particle moving at constantvelocity v goes through a round
annulus made of conducting material with inner and outer radii of ain and aout respectively.
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The fields of the particle induce fields on the surface of the annulus. We introduce the Fourier
transform of the fields as

Ex =

∫

Eω,xe−iωtdω Ey =

∫

Eω,ye−iωtdω (1)

The Fourier transformed transverse fields of a particle moving at constant velocity along the
z axis are given by [5]

Eω,x =
qα
πv

x
ρ

eiωz/vK1(αρ)

Eω,y =
qα
πv

y
ρ

eiωz/vK1(αρ) (2)

The origin of coordinates is at the center of the hole and in particular the hole is in thez = 0
plane.q is the particle charge, and

α =
ω
vγ

=
k
γ
, ρ = (x2+ y2)1/2

K1 is a modified Bessel function of order one.

3.1.1 Particle at the center of target

We will first consider the simpler case of the particle movingthe center of the target. We will
derive equations for the fields and angular spectral distribution which will serve as a useful
check of the more general case when the particle is offset from the center of the hole.

Consider the field at any arbitrary point on the surface of thehole. Given the axial symmetry
of the target, we use polar coordinates. The coordinates of apoint (x,y) on the target are

x = ρ cosφ , y = ρ sinφ

Then
[

Eω,x
Eω,y

]

=
qα
πv

K1(αρ)

[

cosφ
sinφ

]

(3)

We will calculate the fields at an arbitrary location using scalar diffraction theory. Within
this approximation of assuming scalar diffraction theory to be valid, the fields from the entire
target at an arbitrary observation point P can be found by integrating over the annulus

[

Eω,x
Eω,y

]

= −
ik
2π

qα
πv

∫ aout

ain

ρdρ
∫ 2π

0
dφ

eikR′

R′
K1(αρ)

[

cosφ
sinφ

]

(4)

whereR′ is the distance from the point on the target to the observation point P. If(x,y,z) are the
coordinates of P, then

R′ = [(x−ρ cosφ)2+(y−ρ sinφ)2 + z2]1/2 (5)
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Far field spectrum
The observation point P is assumed to be sufficiently far fromthe target so that all points on

the target have nearly the same phase from P. In this case the linear dimensions of the target are
small compared to the distance from the target. This is the regime of Fraunhoffer diffraction.

If R is the distance from the center of the hole to the point P, i.e.R = [x2+ y2 + z2]1/2, then
we assume here thatain,aout ≪ R. Thus in the phase termeikR′

we expand

R′ ≃ R[1−
2ρ
R2 (xcosφ + ysinφ)]1/2 ≃ R−ρ sinθP cos(φP −φ)

where we define

x = ρP cosφP, y = ρP sinφP, sinθP =
ρP

R
, k̄ = ksinθP (6)

Then
[

Eω,x
Eω,y

]

= −
ik
2π

qα
πv

eikR

R

∫ aout

ain

ρdρ
∫ 2π

0
dφK1(αρ)exp[−ik̄ρ cos(φP −φ)]

[

cosφ
sinφ

]

(7)

To do theφ integrals, we use the integral representation of the integer Bessel functions

Jn(z) =
in

2π

∫ 2π

0
exp[−izcosφ ]cosnφdφ (8)

Then
∫ 2π

0
exp[−ik̄ρ cos(φP −φ)]

[

cosφ
sinφ

]

=
2π
i

J1(k̄ρ)

[

cosφP
sinφP

]

(9)

The integral over the radius yields
∫ aout

ain

ρdρK1(αρ)J1(k̄ρ) =
1

k̄2+α2

{

aout [k̄J2(k̄aout)K1(αaout)−αJ1(k̄aout)K2(αaout)]

−ain[k̄J2(k̄ain)K1(αain)−αJ1(k̄ain)K2(αain)]
}

(10)

Using the recurrence relations

xJn+1(x) = 2nJn(x)− xJn−1(x), xKn+1(x) = 2nKn(x)− xKn−1(x)

we can write
∫ aout

ain

ρdρK1(αρ)J1(k̄ρ) =
1

k̄2+α2

[

T (aout ; k̄)−T (ain; k̄)
]

(11)

where
T (a; k̄) = −a[k̄J0(k̄a)K1(αa)+αJ1(k̄a)K0(αa)] (12)

Thus the fields are
[

Eω,x

Eω,y

]

= −
kqα
πv

eikR

R
1

k̄2 +α2

[

T (aout ; k̄)−T (ain; k̄)
]

[

cosφP
sinφP

]

(13)
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The Poynting vector is

~S =
c

4π
~E ×~B∗ =

c
4π

[−βEzE
∗
x x̂−βEzE

∗
y ŷ+β (|Ex|

2+ |Ey|
2)ẑ] (14)

where we have used
Bx = −βEy, By = βEx, Bz = 0

The total energy deposited by the fields onto an element of area dA is the time integral of
the projecteg Poynting vector

dW
dA

=
∫ ∞

−∞
dt ~S · n̂ (15)

wheren̂ is the unit normal to the element. For an element orthogonal to the direction of propa-
gation or direction of specular reflection

dW
dA

=

∫ ∞

−∞
dtSz =

βc
4π

∫ ∞

−∞
dt(|Ex|

2+ |Ey|
2) = 2π

∫

dω[|Eω,x|
2+ |Eω,y|

2] (16)

Hence the differential angular spectrum is

d2W
dΩdω

=
1
2

βcR2[|Eω,x|
2+ |Eω,y|

2] (17)

wheredΩ is the solid angle subtended by the element at a distanceR from the source.
Thus in the far field, the differential spectrum is

d2W
dΩdω

=
1
2

βc(
kqα
πv

)2 1

[k̄2+α2]2

[

T (aout ; k̄)−T (ain; k̄)
]2

(18)

Define a critical frequencyωc, and dimensionless parametersu, t,g as

ωc =
γc
ain

, u =
ω
ωc

, t = γ sinθp, g =
aout

ain
(19)

Then other parameters can be written in terms of these dimensionless parameters ask = γu/(βain),
α = u/(βain) etc and

[

T (aout ; k̄)−T (ain; k̄)
]2

= (
u
β

)2
{

g[tJ0(
1
β

gut)K1(
1
β

gu)+ J1(
1
β

gut)K0(
1
β

gu)]

−[tJ0(
1
β

ut)K1(
1
β

u)+ J1(
1
β

ut)K0(
1
β

u)]

}

The angular spectral distribution thus is

d2W
dΩdω

=
βc
2

(
qγ
πv

)2 u2

[1+ t2]2

{

g[tJ0(
1
β

gut)K1(
1
β

gu)+ J1(
1
β

gut)K0(
1
β

gu)]

−[tJ0(
1
β

ut)K1(
1
β

u)+ J1(
1
β

ut)K0(
1
β

u)]

}2

(20)

We comment on some features of this expression
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• This spectrum depends on the magnitude of the inner radiusain only through the critical
frequencyωc.

• The main dependence of the spectrum on the size of the target is through the dimension-
less ratiog = aout/ain. This is important since it suggests that the target hole maybe
enlarged to allow more space for the beam while at the same time increasing the outer
radius without changing the spectrum. The parameter that will change in this case is the
critical frequencyωc and consequently the dimensional frequencyω.

Th differential spectrum may be found by integrating over the solid angle

dW
dω

=
∫

d2W
dΩdω

dφsinθPdθP =
4π
γ2

∫ γ

0

d2W
dΩdω

t
√

1− t2/γ2
dt (21)

Define the function

F(g,u) =
∫ γ

0
dt

t
√

1− t2/γ2

1
[1+ t2]2

{

g[tJ0(
1
β

gut)K1(
1
β

gu)+ J1(
1
β

gut)K0(
1
β

gu)]

−[tJ0(
1
β

ut)K1(
1
β

u)+ J1(
1
β

ut)K0(
1
β

u)]

}2

(22)

The number of photons∆N emittedby a single charged particle into a bandwidth∆ω is

∆N ≡
dN
dω

∆ω = (
1

~ω
dW
dω

)∆ω (23)

which can be written as

∆Nph = (
1

πβ
α f )u

2F(g,u)
∆ω
ω

(24)

whereα f = q2/(~c) ≈ 1/137 is the fine structure constant. This depends on the relative fre-
quencyu = ω/ωc and the relative bandwidth∆ω/ω.

Example: Tevatron parameters

We evaluate the spectrum and the number of photons per particle for the Tevatron. Energy
= 980 GeV, number of particles per bunchNp = 2.7× 1011. Figure 1 shows the differential
angular spectrum as a function of the parametersg, t with the frequency fixed atω = ωc. Figure
2 shows the spectrum as a function of the parametersu, t at a fixed ratiog = 1.5. See the figure
captions for comments.

Figure 3 shows the number of photons per particle calculatedusing the expression Eq (24)
and assumingω = ωc and a 1% bandwidth or∆ω/ω = 0.01. The curve again shows that there
is little gain in intensity when the target size increases beyondg > 2.5. After some transverse
distance from the particle, its field has dropped to sufficiently low values that no radiators in
the target can be excited and therefore there is no further increase in the ODR radiation with
increasing material in the target. The number of photons emitted by a single particle in one pass

7



2

3

4

g

-4

-2

0

2

4

t

0.00

0.05

0.10

d2W�dWdΩ

Figure 1: The differential angular spectrum as a function ofthe ratio of the outer and inner radii
of the targetg = aout/ain and the angular variablet = γ sinθP at constantu = 1. Note that the
spectrum saturates as a function ofg for g > 3.
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Figure 2: The differential angular spectrum as a function ofthe ratiou = ω/ωc and the angular
variablet = γ sinθP at constantg = 1.5. The spectrum peaks close tou = 1, i.e. close to the
critical frequencyωc.
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Figure 3: The number of photons per particle as a function of the parameterg emitted at the
critical frequencyωc. We observe that forg > 2, the number of photons increases slowly with
g.

through the center of the target can be found from this curve which is calculated for the critical
frequencyωc. For example at

g = 1.1 ⇒ ∆N = 1.44×10−4

A very simple estimate for the number of photons emitted by a bunch in a single pass at the
frequencyωc is therefore

∆N(bunch) = Np ×∆N = 3.2×105

This in fact is an underestimate since it assumes that all particles are at the center of the
target and therefore furthest from the material of the target. A more precise estimate using the
density distribution of the bunch will be obtained in the following section.

Near field spectrum
Here we calculate the field distribution at a distance close enough to the target that the phase

differences between different points on the target to the observation point is significant. This is
the region of Fresnel diffraction.

Here in the expansion forR′ we keep the next order term inρ/R. Thus

R′ = R[1−2
ρρP

R62
cos(φ −φP)+

ρ2

R2 ]1/2 ≃ R−ρ sinθP cos(φ −φP)+
1
2

ρ2

R

The integration for the fields contains the extra phase factor exp[ikρ2/(2R)] when compared to
the fields calculated in the far field approximation.
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Define the dimensionless variables

p =
ρ

ain
, r =

R
ain

, ā =
a

ain
, g =

aout

ain
, η =

γu
2β r

, ⇒
kρ2

2R
= η p2 (25)

Define the complex function

S[ā; k̄,r] =
1

a2
in

∫ a

0
ρJ1(k̄ρ)K1(αa)exp[i

kρ2

2R
]dρ

=
∫ ā

0
pJ1(

1
β

ut p)K1(
1
β

up)exp[iη p2]dp (26)

Then following similar steps as in the previous section, it follows that the Fourier transforms
of the transverse electric fields are

[

Eω,x
Eω,y

]

= −
kqα
πv

eikR

R

[

S(g; k̄,r)−S(1;k̄,r)
]

[

cosφP
sinφP

]

(27)

The angular spectral distribution is

d2W
dΩdω

=
1
2

q2

π2βc
(γu2)2|

[

S(g; k̄)−S(1;k̄)
]

|2 (28)

The frequency spectrum is found by integrating over the solid angle

dW
dω

=
4π
γ2

∫ γ

0

d2W
dΩdω

t
√

1− t2/γ2
dt (29)

Define the function

D(g,u,r) =

∫ γ

0
dt

t
√

1− t2/γ2
|
[

S(g; k̄,r)−S(1;k̄,r)
]

|2 (30)

The number of photons emittedby a single charged particle into a bandwidth∆ω is there-
fore

∆Nph = (
1

πβ
α f )u

4D(g,u,r)
∆ω
ω

(31)

This depends on the inner radiusain through the scaled variablesg = aout/ain,r = R/ain,u =
ω/ωc.

3.1.2 Particle offset from the center of target

Our final aim is to find the spectral distribution from a bunch of particles. Towards that end
we first need to know the field distribution from a particle offset from the center of the target.
The target is in thez = 0 plane and the particle moves with uniform velocityv along the z axis.
Figure 4 shows a sketch of the target with center at O, the particle is at B and the field on the
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Figure 4: The target centered at O is an annulus of inner radius ain and outer radiusaout . B is
the location of the particle offset by a distanceb from the center of the target, A is the arbitrary
location on the target for the field calculation. In the figureon the right, P is the point of
observation, Q is the projection of P on tox− y plane.
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Figure 5: P is the observation point, angleθP is the angle with the z axis andφP is the angle
with the x axis made by the projection onto the x-y plane.
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target is calculated at point A. Again we use polar coordinates: particle at B has coordinates
(b,χ) while point A has coordinates(ρ,φ) with respect to the center O. The distance of A
relative to the particle at B is

r⊥ = [ρ2+b2−2ρbcos(χ −φ)]1/2 (32)

while the separation along the(x,y) axes are individually

x = xA − xB = ρ cosφ −bcosχ, y = yA − yB = ρ sinφ −bsinχ (33)

Hence the Fourier transforms of the transverse fields at A are
[

Eω,x
Eω,y

]

=
qα
πv

K1(αρ⊥)

ρ⊥

[

ρ cosφ −bcosχ
ρ sinφ −bsinχ

]

(34)

As beforeR′ is the distance of the observation point P from the location of the field, thus

R′ = [(xP −ρ cosφ)2+(yP −ρ sinφ)2+ z2
P]1/2

where(xP,yP,zP) = (ρP cosφP,ρP sinφP,zP) are the coordinates of the point P. Figure 5 shows
the relevant anglesθP,φP.

Integrating over the annulus, the fields from the entire target at the point P are (using scalar
diffraction theory)

[

Eω,x
Eω,y

]

= −
ik
2π

qα
πv

∫ aout

ain

∫ 2π

0
ρdρdφ

eikR′

R′

K1(αρ⊥)

ρ⊥

[

ρ cosφ −bcosχ
ρ sinφ −bsinχ

]

(35)

Far field spectrum
We assume that the point P is sufficiently far from the target that the far field approximation

is valid. The phase term is expanded as

eikR′

R′
=

eikR

R
e−ik̄ρ cos(φ−φP)

wherek̄ = ksinθP, θP is the angle made by OP with thez axis or sinθP = ρP/R.
The integrations are simplified if we write the integrands asderivatives with respect to vari-

ables that are not integrated. We note first that
[

∂
∂b
∂

∂ χ

]

K0(αρ⊥) =
αK1(αρ⊥)

ρ⊥

[

ρ cos(φ −χ)−b
bρ sin(φ −χ)

]

Next we transform the fields to a frame rotated by angleχ with respect to the(x,y) axes, i.e.
[

E1
E2

]

=

[

cosχ sinχ
−sinχ cosχ

][

Eω,x
Eω,y

]

(36)
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Then using the derivative expressions above, we find

[

E1
E2

]

= −
ik
2π

q
πv

eikR

R

[

∂
∂b

1
b

∂
∂ χ

]

∫ aout

ain

∫ 2π

0
dρdφ ρK0(αρ⊥)e−ik̄ρ cos(φ−φP) (37)

The double integral can be factorized into the product of single integrals by using the expansions

K0(α[ρ2+b2−2bρ cos(φ −χ)]1/2) =
∞

∑
n=−∞

In(αb)Kn(αρ)ein(φ−χ)

exp[−ik̄ρ cos(φ −φP)] =
∞

∑
n=−∞

(−i)nJn(k̄ρ)ein(φ−φP) (38)

The integration overφ is trivial and the double integral reduces to

H ≡
∫ aout

ain

∫ 2π

0
dρdφ ρK0(αρ⊥)e−ik̄ρ cos(φ−φP) = 2π

∞

∑
n=−∞

(−i)nIn(αb)e−in(χ−φP)

×
∫ aout

ain

ρJn(k̄ρ)Kn(αρ)dρ

The integration overρ can be done symbolically using Mathematica [7] which yields
∫ a

0
ρJn(k̄ρ)Kn(αρ)dρ =

a

k̄2 +α2
[k̄Jn+1(k̄a)Kn(αa)−αJn(k̄a)Kn+1(αa)]

= −
a

k̄2 +α2
[k̄Jn−1(k̄a)Kn(αa)+αJn(k̄a)Kn−1(αa)]

where recurrence relations for the Bessel functions were used. Then defining a functionTn(a; k̄)
similar to the one defined in Equation (12) in Section 3.1.1,

Tn(a;k) = −a[k̄Jn−1(k̄a)Kn(αa)+αJn(k̄a)Kn−1(αa)] (39)

After some further simplifications we can write

H =
2π

k̄2+α2

∞

∑
n=0

CnIn(αb)[Tn(aout ; k̄)−Tn(ain; k̄)]cosn(χ −φP) (40)

where
Cn = 1 for n = 0; Cn = 2(−i)n for n ≥ 1

and the rotated fields are
[

E1
E2

]

= −
ikαq

πv(k̄2 +α2)

eikR

R ∑
n=0

Cn[Tn(aout ; k̄)−Tn(ain; k̄)]

[

I′n(αb)cos[n(χ −φP)]

−n In(αb)
αb sin[n(χ −φP)]

]

(41)

The fields in the lab frame(Eω,x,Eω,y) are obtained by applying the inverse rotation
[

Eω,x

Eω,y

]

=

[

cosχ −sinχ
sinχ cosχ

][

E1
E2

]

(42)
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Limit of zero offset
Before proceeding further, we first check that the expressions derived here reduce to the

expressions derived in the previous sub-section in the limit that the offset is zero.
First we note that

lim
χ→0

[

Eω,x
Eω,y

]

=

[

E1
E2

]

Now using the fact that

lim
b→0

In(αb)

b
=

α
2

δn,1

Then only then = 1 term in the sum contributes and we have

lim
b,χ→0

[

Eω,x
Eω,y

]

= −
kqα

πv(k̄2 +α2)

eikR

R
[T1(aout ; k̄)−T1(ain; k̄)]

[

cosφP
sinφP

]

(43)

These expressions agree with the expressions in Equation (13) derived earlier.
We return now to the case with offset. The differential angular spectrum is proportional to

the square of the absolute norm which is preserved under rotations,

|Eω,x|
2+ |Eω,y|

2 = |E1|
2+ |E2|

2

Hence the differential angular spectrum is given by

d2W
dΩdω

=
1
2

βcR2[|E1|
2+ |E2|

2] (44)

The spectrum from a single particle therefore is

d2W
dΩdω

|particle =
1
2

βc[
kqα

πv(k̄2+α2)
]2 ∑

m=0
∑
n=0

CmC∗
nVmn (45)

where we have defined

Vmn = Umn{I′m(αb)I′n(αb)cosm(χ −φP)cosn(χ −φP) (46)

+mn
Im(αb)In(αb)

α2b2 sinm(χ −φP)sinn(χ −φP)} (47)

Umn = [Tm(aout ; k̄)−Tm(ain; k̄)][Tn(aout ; k̄)−Tn(ain; k̄)] (48)

It is helpful to use the scaled variablesg,u, t introduced in Equation (19). Then

k =
γu

βain
, k̄ = ksinθP =

tu
βain

, α =
u

βain
,

(

kqα
πv(k̄2+α2)

)2

= (
qγ
πv

)2 1
(1+ t2)2 (49)

Furthermore

[Tm(aout ; k̄)−Tm(ain; k̄)] = −
u
β

{

g[tJm−1(
gut
β

)Km(
gu
β

)+ Jm(
gut
β

)Km−1(
gu
β

)]

−[tJm−1(
ut
β

)Km(
u
β

)+ Jm(
ut
β

)Km−1(
u
β

)]

}

(50)
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HenceUmn(g,u, t) is only a function of the scaled variablesg,u, t but does not depend on the
inner radiusain. Similarly we define the scaled offset

bs =
b

ain
, ⇒ αb = bs

u
β

This shows thatVmn(g,u, t,bs) is also independent of the inner apertureain.
SinceVmn is real and symmetric under the interchange of indices, we can write

∑
m=0

∑
n=0

CmC∗
nVmn =

1
2 ∑

m=0
∑
n=0

(CmC∗
n +C∗

mCn)Vmn

Using the definition ofCm we obtain

Cm +C∗
m = 0 m odd

= 4(−1)m/2 m even

CmC∗
n +C∗

mCn = 0 m−n odd

= 8(−1)(m−n)/2 m−n even

Hence

d2W
dΩdω

|particle(g,u, t,b,χ) =
1
2

βc(
qγ
πv

)2 1
(1+ t2)2 [V00+4 ∑

m=2,4,...

(−1)m/2Vm0

+4 ∑
m=1

∑
n=1; |m−n|=even

(−1)(m−n)/2Vmn] (51)

In the limit that the offset goes to zero, this reduces to

lim
b→0

d2W
dΩdω

|particle =
1
2

βc(
qγ
πv

)2 1
(1+ t2)2U11 (52)

which agrees with the expression in Equation (20).
The dependence of the single particle spectrum on the parameters(g,u, t) is similar to that

seen in Figures 1 and 2. Figure 6 shows the dependence of the single particle spectrum on the
angle of observation for two different offsetsb from the center of the hole. With an increased
offset the particle is closer to the material of the target resulting in a larger radiation flux .

The intensities of the different polarizations can be foundfrom the components of the elec-
tric field. From Equation 42 it follows that

Eω,x = −
ikαq

πv(k̄2+α2)

eikR

R ∑
n

Cn[Tn(aout ;k)−Tn(ain;k)]

×

{

I′n(αb)cos[n(χ −φP)]cosχ +n
In(αb)

αb
sin[n(χ −φP)]sinχ

}

(53)

Eω,y = −
ikαq

πv(k̄2+α2)

eikR

R ∑
n

Cn[Tn(aout ;k)−Tn(ain;k)]

×

{

I′n(αb)cos[n(χ −φP)]sinχ −n
In(αb)

αb
sin[n(χ −φP)]cosχ

}

(54)
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Figure 6: The differential angular spectrum from a single particle vs the angle of observation
(t = γ sinθP) with two different offsetsb = 0 andb = 0.5ain. Other parameter values are fixed
at g = 1.3,u = 1,χ = 0,φP = π/4. With non-zero offset, both the minimum and the maximum
value of the flux increases. Note that the position of th maximum also changes with the offset.

Hence it follows that the intensities of the two polarizations are given by

d2W x,y

dΩdω
|particle(g,u, t,b,χ) =

1
2

βc(
qγ
πv

)2 1
(1+ t2)2 [V x,y

00 +4 ∑
m=2,4,...

(−1)m/2V x,y
m0

+4 ∑
m=1

∑
n=1; |m−n|=even

(−1)(m−n)/2V x,y
mn ] (55)

where

V x
mn = Umn[I

′
m(αb)cos[m(χ −φP)]cosχ +m

Im(αb)

αb
sin[m(χ −φP)]sinχ]

×[I′n(αb)cos[n(χ −φP)]cosχ +n
In(αb)

αb
sin[n(χ −φP)]sinχ] (56)

V y
mn = Umn[I

′
m(αb)cos[m(χ −φP)]sinχ −m

Im(αb)

αb
sin[m(χ −φP)]cosχ]

×[I′n(αb)cos[n(χ −φP)]sinχ −n
In(αb)

αb
sin[n(χ −φP)]cosχ (57)

We will use the polarized intensities to examine their sensitivity to beam parameters in the
next section.

3.2 Spectrum from a bunch

So far we’ve dealt with the spectrum from a single particle traveling through the hole. Now
we’ll consider the spectrum from a typical bunch. We assume here a Gaussian distribution of N
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particles with transverse rms sizesσx,σy. We also assume that the bunch center is offset from
the center of the target with offsets(x0,y0). Then

ρ(x,y) =
N

2πσxσy
exp[−

(x− x0)
2

2σ2
x

−
(y− y0)

2

2σ2
y

]

=
N

2πσxσy
exp[−

(bs cosχ − x0,s)
2

2σ2
x,s

−
(bs sinχ − y0,s)

2

2σ2
y,s

] (58)

≡
N

2πσxσy
ρs(bs,χ,x0,s,y0,s,σx,s,σy,s) (59)

The last equality defines the scaled densityρs and we have scaled the other variables byain, the
inner radius of the hole,

bs =
b

ain
, x0,s =

x0

ain
, y0,s =

y0

ain
, σx,s =

σx

ain
, σy,s =

σy

ain
(60)

The differential angular spectrum averaged over the bunch distribution is

d2W
dΩdω

|bunch =

∫

bdb
∫

dχ ρ(b,χ)
d2W

dΩdω
|particle = a2

in

∫

bsdbs

∫

dχ ρ(bs,χ)
d2W

dΩdω
|particle

=
N

2πσx,sσy,s

∫

bsdbs

∫

dχ ρs
d2W

dΩdω
|particle (61)

It is important to note that the spectrum depends only on the scaled variables introduced in
Equation (60) but not on the absolute values ofain, (σx,σy), (x0,y0). Hence this is a universal
expression; the only dependence on machine specific parameters is on the beam energy and the
bunch intensity.

The two-dimensional integrals over(bs,χ) can be factored as the product of single integrals
overbs andχ individually. However the integration overχ introduces a triple summation and
the integrals overb cannot be performed analytically. Instead we will evaluatethe integrations
over the bunch numerically.

The bunch spectrum has the same dependence on the target sizeratiog, the scaled frequency
u and the scaled angle of observationt = γ sinθP as the single particle spectrum. Figure 7 and
8 show the dependence of the spectrum on(g, t) and(u, t) respectively. As before, the intensity
initially increases withg but flattens forg > 2.5. In the sequel I will setg = 1.3 in order to
limit the size of the target. Larger sizes than this if feasible result in significantly larger ODR
intensities mostly at low frequencies but do not change the intensity much at high frequencies.
Figure 8 shows that the angular spectrum as a function of frequency peaks in the vicinity of
u = 1 or ω = ωc when viewed at the angle of maximum intensity correspondingto t = 1.6. At
other angles, the first peak moves to other values ofu and the peaks are of comparable height.

4 Sensitivity to beam parameters

The beam parameters that we wish to measure with ODR are the beam sizes and the beam
positions. The angular spectral distribution is sensitiveto these parameters and we examine
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here the dependence on these parameters. Since the detectorwill have a finite bandwidth in
frequency acceptance, we include this in our analysis. We define a finite bandwidth spectrum
by integrating over the frequency as

d2S
dΩdω

=

∫

∆u
du

d2W
dΩdω

(62)

Here we assume a 1% bandwidth for∆u.
Consider the sensitivity of the separate polarizations to changes in the beam size. Figure 9

shows the horizontal polarization intensityd2Sx/dΩdω as a function of the angle variablet for
two different values of the scaled beam sizeσx,s. When the beam size is larger filling more of
the aperture, the intensity increases at all observation angles. While the absolute change in the
maximum intensity is larger with larger beam size, the relative change in the minimum intensity
(at t = 0) is larger than that in the maximum intensity.

This was exploited in the KEK experiments [1] where the beam size was determined from
the ratio of the minimum to the maximum of the angular spectrum and we apply the same
technique here. The top plot in Figure 10 shows the ratio of the minimum to maximum of the
horizontal and vertical polarization intensities,d2Sx/dΩdω andd2Sy/dΩdω respectively, as a
function of the scaled horizontal beam sizeσx,s. We mention an important point here: the ratio
is independent of the energy, bunch intensity etc but depends only on the scaled parameters
(g,u, t) and scaled beam parameters(σx,s,σy,s,x0,s,y0,s). Hence as long as the scaled variables
have the same values, these ratios will be the same for the Tevatron, LHC etc. The figure shows
the data points calculated from the expressions in Equations (55), (61) and (62) as well as a
quadratic fit through these points. The ratio for the horizontal polarization increases quadrati-
cally with the horizontal beam size but the vertical polarization is insensitive to the change in
horizontal beam size. Since the fit to the horizontal spectrum is quadratic, a 1% increase in the
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horizontal beam size results in a 2% increase in the minimum to maximum ratio. This suggests
that if intensity differences at the level of 2% can be resolved, then beam size changes at the
level of 1% can be detected. The bottom plot in Figure 10 shows the ratio for the horizontal
polarization at three frequencies:u = 0.5,1. The ratio increases quadratically withσx at all
frequencies. Furthermore, the ratio increases withu showing that the sensitivity of the beam
size measurement increases with frequency.

We consider now the sensitivity of the angular spectrum to changes in the beam offsets. To
be useful for diagnostics, the spectrum should be sensitiveto changes in offset which are frac-
tions of a beam size. We find that when the offsets are in the range(0−1)×σ , the maximum of
the angular spectrum does not change significantly. Howeverthe minimum of the spectrum at
t = 0 does change rapidly. So we examine instead the relative change in the minimum intensity
as the offset changes. Figure 11 shows the relative change ofd2Sx(t = 0)/dΩdω to changes in
the beam offset shown in units of the beam size for three values of the frequencyu. We observe
that as the horizontal offset increases from zero to one times the beam size, the minimum hor-
izontal polarization doubles in value. The relative changein the minimum is nearly the same
for the three values ofu, so at these frequencies the relative change in the minimum is not very
sensitive to frequency. The bottom plot in Figure 11 shows the ratio of the minimum to the
maximum of the horizontal polarization. This ratio also increases quadratically with the offset
and more importantly is sensitive to the frequency, increasing at higher frequencies. These re-
sults show that if changes in the minimum intensity at the level of a few % can be measured,
then changes in beam offsets of fractions of a beam size can bedetected.

5 Photon yield

We start by calculating the differential spectrum for a single particle that is offset from the
center of the hole. This will generalize the results in Section 3.1.1. We will then use this result
to calculate the photon yield from a bunch and its dependenceon beam and target parameters.

The differential spectrum for a single particle is found by integrating the single particle
differential angular spectrum over the solid angle,

dW
dω

|part =

∫

d2W
dΩdω part

sinθPdθP dφP =
2
γ2

∫ γ

0
dt

∫ 2π

0
dφP

d2W
dΩdω

|part
t

√

1− t2/γ2
(63)

Substituting from Equation (48) and integrating over the trigonometric functions we find

∫

dφPVm,n = π[[I′m(
ubs

β
)]2+(

mβ
ubs

)2I2
m(

ubs

β
)](δm,n +(−1)mδm,−n)Um,m (64)

whereδm,n is the Kronecker delta and we have usedUm,−m = (−1)mUm,m. Note that the de-
pendence onχ has disappeared after this integration overφP. After some simplifications we
find

dW
dω

|part(g,u,bs) =
q2

πv

[

Ū00I2
1 +4∑

m
Ūm,m(I

′2
m +(

mβ
ubs

)2I2
m)

]

(65)
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Figure 10: Top: The ratio of the minimum/maximum horizontalpolarization intensity and verti-
cal polarization intensity vs the scaled horizontal beam sizeσx,s at constantu = 1,g = 1.3,σy,s =
0.1,x0,s = 0.01 = y0,s. The horizontal polarization intensity increases quadratically with the
beam size as shown by the quadratic fit while the vertical polarization intensity is insensitive
to the horizontal beam size changes. Bottom: The minimum to maximum of the horizontal
polarization intensity for two values ofu : 0.5,1. At u = 0.5, the ratio is smaller which shows
that the minimum intensity is less sensitive to the beam sizeat the lower frequency. However
the ratio still increases quadratically with the beam size.
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where we have defined the integrated functions

Ūm,m(g,u,γ) =

∫ γ

0
dt

t
√

1− t2/γ2

1
(1+ t2)2Um,m(g,u, t) (66)

The differential spectrum from a bunch is found from

(
dW
dω

)|bunch(g,u,γ) ≡
∫

db b
∫

dχρ(b,χ)
dW
dω part

=
N

2πσx,sσy,s

∫

dbs bsρ̄s(bs)
dW
dω part

(67)

where we have integrated over the scaled density

ρ̄s(bs) =
∫

dχρs(bs,χ) (68)

From the expression for the density in Equation (59) it follows that we can write

ρs(bs,χ) = exp[−
1
2
(

x2
0,s

σ2
x,s

+
y2

0,s

σ2
y,s

)]exp[−b2
s σ+,s]exp[−b2

s σ−,s cos2χ]

×exp[
bsx0,s

σ2
x,s

cosχ]exp[
bsy0,s

σ2
x,s

sinχ] (69)

Here we have defined the scaled beam parameters

σ±,s =
1
2
[

1
σ2

x,s
±

1
σ2

y,s
] (70)

Expanding the exponentials of the trigonometric terms in Bessel functions, we have

exp[−b2
s σ−,s cos2χ +

bsx0,s

σ2
x,s

cosχ +
bsy0,s

σ2
x,s

sinχ] = ∑
j≥0

∑
k≥0

∑
l≥0

(−1) jD jDkDlI j(b
2
s σ−,s)Ik(

bsx0,s

σ2
x,s

)

×Il(
bsy0,s

σ2
y,s

)cos2jχ coskχ cos[l(π/2−χ)]

where
D j = 1 for j = 0, D j = 2 for j ≥ 1

After integrating over the angleχ , it follows that

ρ̄s(bs) =
π
2

exp[−
1
2
(

x2
0,s

σ2
x,s

+
y2

0,s

σ2
y,s

)]G(bs) (71)

G(bs) = exp[−b2
s σ+,s]

[

4I2
0(b2

s σ−,s)I0(
bsx0,s

σ2
x,s

)I0(
bsy0,s

σ2
y,s

)

+ ∑
Not[ j=0=l]

j ≥0

∑
l≥0

(−1) j+lD jD2lI j(b
2
s σ−,s)I2l(

bsy0,s

σ2
y,s

)

{

D2| j−l|I2| j−l|(
bsx0,s

σ2
x,s

)

+D2( j+l)I2( j+l)(
bsx0,s

σ2
x,s

)

}]

(72)
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If the offsets vanish, i.e.x0 = 0 = y0, this simplifies to

lim
x0,y0→0

ρ̄s = 2π exp[−b2
s σ+,s]I0(b

2
s σ−,s) (73)

Define the following function obtained after integrating overbs

Fm(u;σx,s,σy,s,x0,s,y0,s) =
∫ 1

0
dbs bsG(bs)[(I

′
m(

ubs

β
))2+(

mβ
ubs

)2I2
m(

ubs

β
)] (74)

In the limit that the offsets vanish, this simplifies to

lim
x0,y0→0

Fm = 4
∫ 1

0
dbs bs exp[−b2

s σ+,s]I
2
0(b2

s σ−,s)[(I
′
m(

ubs

β
))2+(

mβ
ubs

)2I2
m(

ubs

β
)] (75)

The differential spectrum from a bunch is obtained from

(
dW
dω

)|bunch =
q2

2πv
N

σx,sσy,s
exp[−

1
2
(

x2
0,s

σ2
x,s

+
y2

0,s

σ2
y,s

)]

{

Ū0,0F0+4 ∑
m≥1

Ūm,mFm

}

(76)

The photon yield into a bandwidth∆ω is

∆Nph =
α f

2πβ
N

σx,sσy,s
exp[−

1
2
(

x2
0,s

σ2
x,s

+
y2

0,s

σ2
y,s

)]

{

Ū0,0F0+4 ∑
m≥1

Ūm,mFm

}

∆ω
ω

(77)

This is the photon yield from a single bunch per turn over the full 4π solid angle, the number
of photons intercepted by the detector will be reduced by theacceptance of the detector.

Figure 12 shows the photon yield (plotted on a logarithmic scale) from a single bunch per
turn into a 1% bandwidth as a function of the frequency for three values of the scaled beam size
σx,s. We have set the offsetsx0,y0 to zero for this calculation. The photon count is about 106

photons per bunch per turn atu = 1 which should yield a detectable signal. The dependence of
the photon yield on frequency is almost exponential especially after u = 1. The photon yield
does not depend sensitively on the beam size at low frequencies but at higher frequencies, the
sensitivity to beam size increases.

The scaled frequencyu can be converted to a physical frequency by making a choice ofthe
inner radiusain of the hole. If we assumeσx,s = 0.125= σy,s or ain = 8σ andσ ≈ 0.4mm at
the C0 location in the Tevatron, then the critical wavelength λc corresponding to the critical
frequencyωc is λc = 2πain/γ = 19µm. This is in the infra-red range. Detection in the optical
range seems to be ruled out since we find that atu = 19 or λ = 1µm, the photon count is
about 10−8/bunch/turn or practically zero. We can increase the photonyield by increasing
the target size to sayg = 2.5, the optimal value found earlier. Figure 13 shows the yields
for g = 1.3,2.5. At low frequenciesu < 1.5 the difference is significant but not so at higher
frequencies. There is therefore no advantage to be gained with a larger target size if we choose
to operate at frequencies aboveu > 2.
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a function of the scaled frequencyu for three values of the scaled beam sizeσx,s. In all cases
σy,s = σx,s. Tevatron bunch intensity and energy were used in this calculation. The photon
yield is not very sensitive to the beam size at low frequencies but the relative difference in yield
increases at higher frequencies.
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Figure 13: Photon yield (on a log scale) from a single bunch per turn into a 1% bandwidth as a
function of the scaled frequencyu for two values of the target sizeg. Here the scaled beam size
is chosen asσx,s = 0.125= σy,s.
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We can use the photon yield to choose the frequency at which toobserve the ODR. In
practice the minimum photon yield will be determined by the efficiency and resolution of the
camera and the level of the background synchrotron radiation which should be below the ODR
photon yield. If for example we set the minimum photon yield to be 104 photons/bunch/turn
into a 1% bandwidth, then the highest scaled frequency from the plots above isu = 3.5. For the
Tevatron, this implies that observable wavelength has to beat or above 5.4µm. If we integrate
the signal over all 36 bunches and the bandwidth is greater than 1%, then the wavelength could
be reduced some more. However it will be in the few microns range and not in the optical range.

6 OTR vs ODR spectrum

OTR is generated when the beam goes through the material of the target. The expressions for
the OTR spectrum can be found from the ODR spectrum by taking the limit ain → 0. With
OTR we cannot define a critical frequencyωc and OTR observations show that there is no
frequency at which the frequency peaks. This is a qualitative difference from the ODR spectrum.
Similarly we cannot also define universal expressions for the OTR spectrum which depend only
on dimensionless parameters.

In this section we will briefly discuss the OTR single particle spectrum as a limiting case
of the ODR spectrum. First consider the single particle at the center of the OTR target. From
Equation (18) it follows that the differential angular spectrum in the far-field is given by

d2W OT R

dΩdω
|part =

1
2

βc(
kqα
πv

)2 1

[k̄2+α2]2
T (a; k̄)2

=
1
2

q2γ2

π2v
a2

(1+ t2)2 [k̄J0(k̄a)K1(αa)+αJ1(k̄a)K0(αa)]2 (78)

Herea is the radius of the target,̄k = ksinθP, α = k/γ.
Figure 14 shows the dependence of the single particle OTR andODR spectrum on the

angular variablet. For the parameters chosen here (aout = 1.3ain, u = 1), the maximum OTR
intensity is about 8 times larger than the ODR intensity. Of this, a factor of 2.45 is due to the
different areas of the material in the target for OTR and ODR.Furthermore, the OTR spectrum
peaks at a smaller anglet ≈ 1 ⇒ θP ≈ 1/γ while the ODR spectrum peaks att ≈ 1.6. This
figure shows that ODR is beamed in a broader cone and at a largerangle than OTR. For the
single particle spectrum with the particle offset from the center, Equation (51) is still applicable
for the differential angular spectrum except thatUmn defined in Equation (48) simplifies to

Um,n = a2[k̄Jm−1(k̄a)Km(αa)+αJm(k̄a)Km−1(αa)]

×[k̄Jn−1(k̄a)Kn(αa)+αJn(k̄a)Kn−1(αa)] (79)

The OTR bunch spectrum can be similarly found by taking the limit ain → 0 in the appro-
priate expressions above.
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Figure 14: Comparison of ODR and OTR intensities for a singleparticle centered on the target.
The outer radiusaout is assumed to be the same in both cases.

7 Experimental Issues

The devices and experimental conditions needed to observe ODR in the Tevatron requires a sep-
arate detailed discussion. Here we will only mention some ofthe issues. Synchrotron radiation
from the upstream dipoles hitting the target is an importantsource of background and needs to
be mitigated. Preliminary calculations [8] show that the level of background at a target near
the C0 point in the Tevatron is less than the anticipated ODR flux. A mask placed upstream of
the target may help to reduce this background to acceptable levels. The wavelength at which to
observe the ODR depends on several competing factors. At longer wavelengths the ODR flux
is higher but far infra-red detection is less sensitive, slower and complicated by other matters
such as choice of windows which are sufficiently transparentat longer wavelengths. The syn-
chrotron radiation background also increases at longer wavelengths. A satisfactory compromise
might be in the vicinity of 5µm. Given the likely speed with which the ODR images will be
acquired, it is unlikely that bunch by bunch and turn by turn imaging will be possible with the
ODR monitor. Averaging over turns will most likely be necessary but it should be possible to
update images on the time scale of seconds. Calibration of the ODR measurements requires
measurements by other beam imaging devices nearby. At C0, the synchrotron light monitor is
relatively close and would be suitable for calibration of the ODR monitor. If a circular target
is used, it would likely be made of two semi-circular halves which will be moved in towards
the beam on separate stepper motors. These two halves will need to be precisely aligned and
their positions measured with respect to the beam. It is verylikely that due to the nature of the
helical orbits, the target in the Tevatron will only be suitable for one beam. We would choose
the proton beam for ease of availability and greater intensity. It would be preferable but not
essential to choose the longitudinal location of the targetso that both beams are not present
simultaneously to avoid any effects from their parasitic interaction. Independently of this, the
circular target may not be suitable if the helical orbits areseparated by several beam sizes at the
target. In this case the desired beam may have the required separation from the target but the
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opposing beam will not be far enough from the target. This could be avoided by having the two
halves of the target separated by a gap. Instead of semi-circular foils, rectangular foils on either
side may be preferable in this case.

We envisage that if initial measurements are successful, the ODR monitor could be used a
passive device monitoring beam parameters and their changes during the length of a store. Here
other operational challenges will arise. For example, beammotion which changes the position
relative to the target will need to be included in the automated ODR measurement. Wake fields
due to the target and heating of the target by beam induced fields are likely to be negligible but
need to be considered. Some of these same issues have arisen and been resolved with the use
of the pick-off mirrors for the synchrotron light mirror andwill benefit from that experience. A
detailed account of these and other relevant issues will appear elsewhere.

8 Conclusions

Our main concern here was the far field ODR spectrum from a round hole in a collider and
specifically the Tevatron. We list the main conclusions

• Existence of a critical frequency and universal curves.

There is a critical frequencyωc associated with ODR at which the angular spectrum
intensity peaks. There is no such frequency with OTR This is awell known phenomena.
However we have also shown, something not previously recognized, that the spectrum
for a round hole depends only on dimensionless parameters. Hence the results seen in
Figures 7 to 11, especially the sensitivities, are universally applicable to all machines
when these dimensionless parameters have the same values.

• Sensitivity to beam sizes.

The ratio of the minimum to maximum intensity is very sensitive to the beam size as
seen in Figure 10. The sensitivity increases with observation frequency. The horizontal
polarization is sensitive to the horizontal beam size and similarly for the vertical plane.
This differs from the dependence with rectangular slits andstraight edges.

• Sensitivity to beam offsets

We found that the minimum of the angular spectrum along the direction of specular re-
flection is most sensitive to changes in the beam offset. The ratio of the minimum to the
maximum can also be used, this has the added advantage of higher sensitivity at increas-
ing frequencies. Again, we found very good sensitivity (seen in Figure 11) to changes in
beam offset of fractions of a beam size.

• Photon yield.

We calculated the photon yield from a single Tevatron bunch at 980 GeV. The photon
yield decreases exponentially fast with frequency. Assuming an 8σ separation between
the beam and the target, the critical wavelength is 19µm. The calculation predicts that
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photon yields of≈ 104 photons/bunch/turn into a 1% bandwidth will be obtained at about
a 5µm wavelength. Detection at optical frequencies does not seem feasible. It is clear
that the lower wavelength limit for observable ODR signals in the far-field is at a few
microns, in the infra-red regime.

In this paper we did not consider the near-field spectrum in much detail except briefly in Sec-
tion 3.1.2. That discussion as applicable to the spectrum from a bunch and a detailed discussion
of experimental details will appear separately
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